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ABSTRACT 

We ex tend  to the  case of odd-dimensional spheres  a t heo rem of Lubotzky,  

Phill ips and  Sarnak  giving opt imal ly  equid is t r ibu ted  sets  of  points.  The  

proof  relies on the  theory  of au tomorph ic  forms and  h igher-d imensional  

Sh imura  varieties. 

Introduct ion  
In 1986 Lubotzky, Phillips and Sarnak [9] applied the theory of automorphic 
forms to the problem of distributing sequences of points on the sphere S 2. They 

considered families of increasing size of elements of SO(3), say 

{35,72 . . . .  ,TN,7~-t, . . .TN 1} = S, 

and considered the operator 

7C8 

operating on the space L2(S 2) of L 2 functions of zero mean. For suitable choices 

of the {7i} they showed that the operator norm of T~ is bounded by ~- x / ~ N -  1; 
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they also showed that  this bound is optimal. A bound on the operator norm 

implies, for any x 6 S 2, a bound on 

for any suitably regular function f on S 2. Thus the Ts yield a finite approxima- 

tion of the integral, with a good error term. 

The purpose of this paper  is to extend some of these results to o d d -  

d i m e n s i o n a l  spheres. Thus let n >_ 2 be an integer and S 2n-I the sphere 

IIzll = 1 in R 2~ with the standard Euclidian metric. A Hecke operator is an 

operator on L2(S 2n-1) of the form 

T = T s = E 7  
76S 

where 7 6 SO(2n). We denote by d = deg(T) the degree of T; thus d = IS I. As 
in [9] we set 

1 
5(T) = ~ H T  } L2o(S2n-')][ 

where the norm is the L~-operator norm. Note that  our operators are not sym- 

metric. 

THEOREM 1 : There exists a positive integer h _> 1 with the following property. 
For each prime p _~ 1 [4], p > 13 there exists a Hecke operator Tp of degree 

d = h(p ~-1 + . . . + p +  1) such that 

5(Tp) < h n p  (1-n)/2. 

COROLLARY: For any given E > O, 

5(Tp) <_ h3/2n(1 + c)d(Tp) -1/2 (p ~ +oc). 

The constant h is essentially a class number, which could be determined with 

the requisite amount of (mechanical) computation. For large n it is not possible 

to obtain h = 1, as in [9]. For heuristic purposes assume, however, that  this is 

attained. We can then ask whether the bound 

(77) ~(Tp) <_. p(1-n)/~ 

is optimal. One can show at least that  the order of growth of 5, with respect to 

the degree, is indeed optimal. 
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We identify R 2n with C n endowed with the standard Hermian metric. We will 

constuct our operators Tp from elements 3 ~ E U(n) acting naturally on the sphere. 

They then also act on the quotient P~- 1 (C) of S 2n- 1. An argument of [9] applies 

in this situation to yield: 

THEOREM 2: It T is a symmetric Hecke operator (associated to elements of 

U(n)) acting on L2(~n-I(C)),  of degree d -- 2N, ~(T) >_ ~ - 1/N. 

This has been proved by Pisier [10] for Hecke operators acting on the space of 

functions of mean value 0 on the sphere. We include the proof, however, because 

it is quite different and gives a natural extension of the methods of [9]. More 

general results have been announced by Y. Shalom [12, w 

In particular, this lower bound is a fortiori true for the action on L2o(S2n-1). 

It is likely that Theorem 2 could be proved, with no restriction on parity, for 

L~(S~). This was suggested by the authors of [9]: see p. 164 of that  paper. 

Consider an operator Tp as in Theorem 1, and set T = Tp + Tp. Then, 6(T) _< 

25(T~). (Here both operators are considered in L2(S2n-1).) Thus Theorem 1 and 

Theorem 2 yield an upper bound and a lower bound on 5(T), which are easily 

seen to be compatible. We think, however, that  in higher dimension the lower 

bound should be more like n p(1-n)/2 (see (??) above), which of course has no 

evident expression in terms of the degree. If we may assume h = 1, this can be 

proved using the methods of Serre [11] which allow one to study the repartition 

of the eigenvalues of Tp in spaces of spherical harmonics of high degree. We defer 

this to an eventual application. 

We have not spelled out all the consequences of Theorem 1; many would follow 

simply by the methods of [9]. We only state the obvious consequence for finite 

integration on S 2~-1. Let A denote the invariant Laplace operator on the sphere. 

THEOREM 3: Assume f is a function on S 2n-1 such that A n / i s  square-integrable 

(so f is continuous). Then for any x E S 2n-1 

1 f 
f( x) - Js  -i f < h P(1-nl/ {clllfl12 + C211A fll2}" deg(Tp) 

The constants C1 and 6'2 are independent of f and obtained as follows. Let ~, r 

be two functions on the sphere such that An~ = 6 + r  ~ being the Dirac measure 

at some point x0 on the sphere. We assume r to be C ~ and ~ continuous. Then 

c1 = 11ell2 and C2 = 11~ll2. The proof (in a more general context) can be found 

in [4, w We repeat it. 

Let G = U(n), and let K -~ U(1) x U(n - 1) be the stabilizer of the point 

x E S 2~-1. The Laplacian A on the sphere can be seen as an element of U(g) K, 
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a commutative algebra since (G, K)  is a symmetric pair. We in turn consider A 

as a distribution on G with support at the origin. Let 5 be the Dirac measure at 

x. It is well-known that there exist functions ~, ~ on S 2n-1 = G / K  such that  

with ~ C ~ and ~ continuous. Averaging, we may assume p, ~ invariant by K.  

Then this can be rewritten as 

1 Now the argument of [4, w yields, with T = ~ T p ,  

T f  - f0 = [:F(f * An) - -  ( f  * An)0] * ~ - -  [ T ( f  - f0)] * r  

go denoting for any function g o n  S 2 n - 1  the constant function equal to fs2,-1 g. 

Since [g * h](x) ~ [[gl[2][h[[2 for two functions on G, the result follows. 

The proof of Lubotzky, Phillips and Sarnak relied on the Ramanujan conjec- 

tures proved by Deligne. Our proof relies on higher-dimensional analogues of the 

Ramanujan conjecture, and implicitly on deep results concerning the Hasse-Weil 

zeta functions of Shimura varieties and obtained in the last decade. As well as 

Deligne's general solution of the Weil conjectures [6], we use Kottwitz's results 

on special Shimura varieties [8] and the solution given by us of a conjecture of 

Rapoport.  

Finally, we can obtain an expl ic i t  set of primes (here p > 13) only by using 

the solution by Harris and Taylor of the local Langlands conjecture! 

We note that we do not know how to extend these results to even-dimensional 

spheres. Here, however, weaker estimates are available as a consequence of [3] 

and are contained in a paper by H. Oh.* 

1. He c ke  o p e r a t o r s  on  c e r t a i n  u n i t a r y  g r o u p s  

1.1. We view S 2n-1 as a quotient of G = U(n). A Hecke operator is an 

operator on L2(G) of the form T = ~-]~es ~, S c G. We use the notations of the 

Introduction. Theorem 1 follows from 

THEOREM 1.1: For p - 1 [4], p > 13 there exists a Hecke operator Tp of degree 
d = h(p n-1 + . . .  + 1) such that 

5(Tp) = d]]Tp [ L20(G)[ [ <_ hnp(1-n)/2.  

* H. Oh, Distributing points on S N (N > 4), apr~s Lubotzky, Phillips and Sarnak. 
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We will in fact construct an infinite number of such operators. Here L~o(G ) is 

the space of functions on G orthogonal to the Abelian characters. 

In this paragraph we have to recall the formalities of "automorphic forms on 

compact groups". Since U(n) plays no particular role, we consider an arbitrary 

reductive group G over Q such that G(R) is compact. (Thus U(n) will be G(]R).) 

Write G(A) = G(N) x G(Af). Let K be a compact open subgroup of G(Af). 

Then we can choose a finite set of elements (gi)ieI of G(As) such that 

(1.1) c(A) = I_[ 
iE l  

If, moreover, G(]R). gKg  -1 n G(Q) = {1} for any g E G(AS), (1.1) yields 

(1.2) XK := G(Q)\G(A)/K ~ H G(R), 
iE l  

the embedding of each factor G(]R) being given by go ~ g~gi. We will make 
this assumption. Let h = # I .  

In particular, the space of smooth functions on G(Q)\G(A) invariant by K is 
identified with ~ CC~(G(R)); ditto with L 2 functions. 

Suppose x E G(AS). Our operator T will be given by the action on the right 

of the double coset K x K  on L2(XK). We identify L2(XK) with L2-functions 

on G(Q)\G(A), invariant by K on the right. Set 

(1.3) K x K - - H K x n j ,  hj : x n j  EG(Af), 

a finite sum, where ~j(j E J) ranges over x - l K x  M K\K .  Then 

(1.4) (fIT)(g) = ~ f(g hj). 

By (1.2) L2(XK) "~ ~ i e l  L2(G(R)) �9 For f �9 L2(XK) write f -- (f~). Then 

ff T = ~ - ( ~ ) ~ s l -  For each c~, ~ ( g ~ )  = (ftT)(g~g~) = ~ j  f(g~g,~hj). 
Note that (1.1) implies 

(1.5) G(Af) -- H G(Q)git(. 
iEI  

Thus we can write, for each pair ((~, j) ,  

(1.6) g, hi = 7(a, j)g~(,~,i)n(a, j) 

with 7 (a , j )  �9 G(Q) and n(a,j) E K. 
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For clarity write (g~;gf)  for an element of G(A) = G(R) • G(AI). Then 

~/(g~;gf) means ~ E G(Q) acts diagonally, while ~g~, ~/gf denote the separate 

actions. Now 

J 

= E f ( (g~;  ~/(o~,J)gi(,,j)) 
J 

(since f is K-invariant) 

(since f is G(Q)-invariant) 

= ~ .f((~(c~,J)-lg~; gi(,~,j)) 

= Efi(c~,j)(~(~,j)-lg~). 
J 

We record this as 

LEMMA 1.1: (flT)~(g~) = ~ j  fi(~,j)("/(c~,j)-lg~). 

Now consider L2(G(R)) embedded diagonally in L2(XK) by f ~-+ ( f , . . . ,  f ) ;  

denote this embedding by J; let S: L2(XK) --~ L2(G(R)) be the sum, (f~) ~-+ 

fi. Then the operator S T J sends f to 

S T Z(f)(g~) = E ~ f(7(a' J)-'g~)" 
j 

Thus it is a Hecke operator in the sense of the Introduction. Since the norms 

of J and of S are both equal to v~,  we have for the L2-operator norms: 

LEMMA 1.2: ]IS T JII <_ hllTII. 

Denote by L2o(XK) the subspace of functions orthogonal to all 1-dimensional 

characters of G(R) h. Since T commutes with the diagonal action of G(R) on the 

right, T preserves L020; J sends ngo(G(~r (defined analogously) to L~o(XK ) and 

conversely for S. Thus: 

LEMMA 1.3: IIST J I L2o(G(R))II < hlIT I L2o(G(R))[I. 

1.2. Now G(]R) = U(n) and we must construct the group G/Q. We use the 
groups constructed in [8]. Let E be the field Q(~/---1) and let D be a division 

algebra over E satisfying the following properties: 

(1.7i) D admits an involution of the second kind * relative to E/Q. 



Vol. 132, 2002 AUTOMORPHIC FORMS 181 

(1.7ii) At the two primes 5', 5" of E dividing 5, D has invariant l /n ,  - l / n ;  it is 

thus a division algebra over these local fields. 

(1.Tiii) The involution (*) is positive on D | C. 

Let G be the unitary group over Q defined by D: 

G(Q) = {d c D :  dd* = 1}. 

Then G(R) ~ U(n) by (1.7iii). We further assume: 

(1.Tiv) G is quasi-split and unramified at all primes p r 2, 3 and 5. 

That  G can be so chosen (for a suitable choice of D and , )  is proved in [1, w 

We now choose the group K = l ip  Kp c G(Af).  The group G(Q5) is isomor- 

phic to D • (Eh,), a division algebra over ~5. Let K5 be its maximal compact 

subgroup. For p > 5, G(QB) is unramified - -  a unitary group or GL(n) - -  and 

has a natural hyperspecial subgroup Kp. Finally, we choose K2 or K3 small 

enough that  the assumptions in w are met. Of course we have no control on 

the resulting class number h. 

The operator Tp of Theorem 1.1 will be S T J, where T is a Hecke operator 

in the Hecke algebra of (G(Qp),Kp) for p _= 1 [4]. Then G(Qp) = GL(n, Qp), 

Kp = GL(n, Zv) and 

r = Kp .. Kp. 

1 

The space 7-/g is L2(G(Q)\G(A)/K)  = L2(G(Q)\G(A)) g .  The space 

L2(G(Q)\G(A)) := t :a  

decomposes discretely as a sum of automorphic representations of G(A), of the 

form 7r = 7too | @p 7l'p. 

Recall [1] that lrp determines its Hecke matrix, a diagonal matrix tTr,p in 

GL(n, C). Then, with the implicit normalizations we chose, the associated oper- 

ator T acts by p(n-1)/2(tl + . . .  + tn) where (ti) are the eigenvalues of t~,p. We 

now have: 

PROPOSITION 1.4: /(Tr~ is not an Abelian character, ]ti] = 1. 

Proof: We show that  the representation 7r of G(A) lifts to an automorphic 

representation 1rE of G(AE) = D • (&E) such that 

(1.8) For p > 5 and PIP, 7rE,p is obtained by unramified base change from 7rp. 
(1.9) 7rE,5, and 7rE,5,, are Abelian characters. 
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(1.10) The infinitesimal characters of the Archimedian components 7too and 7rE,oo 

are associated by base change (cf. [2]). 

The argument is essentially contained in Clozel-Labesse [2: Th6or~me A.5.2], 

whose notations we keep. Let S = {2, 3, 5}, and choose small compact-open 

subgroups K~, K~ of K2, K3. Then if K '  = K~K~K5 Hp>5 I(p, 7r K' occurs in 

L2(G(Q)\G(A)/K'). We take a function f on G(A) of the form foo | (~pfp, 
where fp is the characteristic function of Kp, and foo is the normalized character 

of 1too. If r denotes the representation for p _< 5, of G(A) on s  and fs  = 
(~p~S fp is unramified, 

t r r ( f )  ={ ~ t rpoo ( foo ) t rp s ( f s )}xp ( f  S) 
p: 

S S 
Xp =X,r  

+ ~ trpoo(foo)trps(fs)Xp(fS), 
p: 

S S Xp V=X~ 

the sums being finite even for varying fs. The coefficient {. . .} is strictly positive. 

For K~, K~ small enough, the functions f2 and f3 are associated to functions ~2, 

~3 on G( E |  G(E| The same is true for the function f5 since 5 splits. 

The proof now follows as in [2: Th6or~me A.5.2] from the base change identity 

[2: Th~or~me A.3.1]; by the correspondence of Hecke functions (1.8) is satisfied, 

and (1.9) also is satisfied by split base change at 5. 

Now p splits in E,  so 71-p determines a representation of D• | Qp) -~- 
GL(n, Qp) • GL(n, Qp), isomorphic to 7rp • 7rp (up to identifications). We must 

show the "purity" condition [ti[ = 1. For this, note that by the Jacquet 

Langlands correspondence - -  due in this case to Vign6ras - -  ~rE is associated 

' of GL(n, AE); since ~rE is an to an automorphic (discrete) representation 7r E 

Abelian character at 5' or 5", ~r~ is isomorphic to an Abelian twist of the Stein- 

berg representation at those primes, and therefore cuspidal ,  or is an Abelian 

character [13]. The last possibility is ruled out because 7r~E,o~ =~ ~rE,oo, and the 

infinitesimal character of ~rE,oo comes from that  of 7too by base change: but 7too 

is not an Abelian character. Harris and Taylor then show that there is a Galois 

representation - -  pure of weight 0 - -  whose Frobenius eigenvalues are associated 

in the usual fashion to the Hecke matrices [7, Theorem C]. This implies that  

Iti[ = 1. (If we were content with almost all primes we could use the results in 

[1, 2].) 

We note that  Theorem 1 follows from Theorem 1.1: since S 2n-1 is the quo- 

tient of U(n) by the subgroup U(1) x U(n - 1) stabilizing the first basis vector, 
L2(S 2n-l) is a subspace of L2(U(n)). Then n20(S 2n-l) -- n2oo(U(n))NL2(S2n-1). 
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Use Lemmas 1.2 and 1.3. Finally, we remark that obviously other sets of primes, 

associated to different quadratic fields, would be obtained analogously (but with, 

in each case, a different h). 

2. P r o o f  of  T h e o r e m  2 

The proof adapts the methods of [9] to our case. We follow the exposition of Colin 

de Verdi~re [5]. However, a more delicate representation-theoretic argument is 

needed in addition to [9]: this is due to the fact that our Lie group (here PU(n), 

see below), unlike SO(3), has singular elements different from 1. 

Since we are working in L2(]t~-1(C)), the unitary group U(n) acts in fact 

via the projective unitary group PU(n), which we denote by G. Thus S = 

{3'1,72,... ?N, 7~-1,...,-~N 1} can be taken to be a symmetric set in G; let Ts be 

the associated Hecke operator. We have 

p n - I ( c )  = G / H  where H = P(U(1) x U(n - 1)). 

Let T C H C G be the (diagonal) maximal torus. An irreducible representation 

of G is then determined by its highest weight. This is a character of :~ = U(1) n C 

U(n), given by ~ = (AI,- . . ,An) E Z" with A1 _> "'" >_ An; moreover EAi = 0. 

We are interested in representations that  occur in L2(G/H). Since (G, H) is a 

symmetric pair they occur with multiplicity one; by the theorem of Car tan-  

Helgason [14, Theorem 3.3.1.1] these are the representations such that A = 

(~1, P, P,. . .  #). Thus ~ = ( ( n -  1)r, - r ,  - r , . . . ,  - r )  for r _> 0. We will sometimes 

write ~ = Ar (r E N). From now on A will always denote such a weight. 

Let Vr C L2(G/H) be the associated space, and let #~ denote the atomic 

measure on N with support in [ -2N,  2N] --- 2N being the operator norm of Ts 

given by 

dim Vr 

_ 1 ( E 5~'), (2.1) 
#~ dimV~ \ 

j = l  

where {Aj} are the eigenvalues of Ts in V~ and 5Aj is the Dirac measure at Aj. 

Theorem 2 follows from: 

THEOREM 2.1: For r --+ ~ ,  pr --+ #, the spectral measure of the group F 

generated by S in G with respect to the generators S. 

We refer to [9] or [5] for the notion of spectral measure, and for the fact that 

Theorem 2.1 implies Theorem 2 (by a theorem of Kesten). Recall that  #, a 
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measure on [ -2N,  2N], is determined by its moments: for s E N, 

(2.2) f t s d #  = ms = # { 7  e Ws: 7 = 1 in G}. 

Here, Ws is the set of words of length s in the generators (7i, 7/-1). 

In order to prove Theorem 2.1, it is then sufficient to estimate f tSdpr for fixed 

s and r -+ +c~. Now 

f 1 ~ s _  1 
tSdpr - d i m ~  ~,Aj dim Vr tr(T~[Vr) 

and this is equal to 

(2.3) 1 
dimVr y ~  tr(TlVr). 

~E Ws 

If 7 = 1 in G, ~ tr(7]Vr) = 1. Since Ws is fixed it suffices to prove: 

LEMMA 2.3: I fg  E G and g # 1, 

1 
dim Vr tr(g[Vr) -+ 0 (r --+ +cx~). 

Proof" Let x E U(n) be a lift of g for the natural map U(n) --+ G; then x is 

not central. If x is regular the lemma follows immediately from Weyl's character 

formula (cf. [9]). Assume x singular. Its centralizer in U(n) is then equal to 

M = U(nl) x . . .  x U(nt) and different from U(n) :  t _> 2. 

We may see Vr as a representation of U(n) D M. The character of its restriction 

to M is then given by Kostant's formula: 

(2.4) ChM(Yr) = ~ s(w)ChM (Vw~+p)_p) 
~-'~w C(W) ChM(Vwp-p) 

Here w ranges over elements of the set ~M C YI, fl being the Weyl group of 

(a ,T)  and a "  the subset such that w - l a ~  C Z~+ - -  here ~ = Z~5 U Z ~  + is 
the root system of (G, T) for some choice of Borel subgroup and A + = A + a AM, 

with obvious notation. We have indexed irreducible modules V M for M by their 

highest weight. See [14, Theorem 2.4.2.2] for the other (standard) notations. 

A priori this is a formal identity in the Grothendieck group of representations 

of M, but it can in fact be evaluated on an element x in the center of M. For 

this it suffices to check that the denominator is non-zero. Using Weyl's formula 

we see that the denominator (seen by restriction as being in the Grothendieck 
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group of T) is equal to the following expression, ~M being the Weyl group of M: 

~-~wef~(w)wp = PPM' H (1 - a ) .  (2.5) Ew~M ~(w)wp 
c, EA~_ 

Since the centralizer of x is exactly M, the right-hand side of (2.5) is non-zero 

at x. 

Now consider again (2.4). The denominator (at x) is fixed and non-zero when 

varies. We must show that  for r -+ +oo and A = A~ each term 

(2.6) M C(w) ChM (Vw(A+p)_p), 

divided by dim(V~), tends to 0. Since x is central in M, (2.6) is essentially the 

By Weyl's dimension formula, we must consider the 

(2.7) I-Iz (~, w(~ + p) - p + PM) 

Here a ranges over positive roots of (G, T) and/~ over positive roots of (M, T). 

Now (2.7) is 
H ~ ( ~ ,  ~ + p - w(p  - PM)) 

r L ( ~ ,  ~ + p) ' 

where now 7 ranges over w - l A  + C A +, a subset of the a's. If a is equal to ~, 

the corresponding ratio is constant (if a vanishes on the direction of the A's) or 

tends to 1. (Note that all terms are positive.) So we only have to show: 

LEMMA 2.4: Fix w E f~M. There exists a ~ w--li~//(ff �9 AS) such that  

(a,)~l) # o. 

Indeed, let AM, be the subset of a �9 AG such that (a, A1) = 0 (it is the root 

system of a Levi subgroup of the complexification of G). If the Lemma is false, 

A + c w - l A +  M U AM,. In particular, AG C w - I A M  U AM1. This says that the 

root system of G is the union of two roots systems associated to proper Levi 

subgroups. 

Thus the following lemma completes the proof: 

LEMMA 2.5: Assume A is an irreducible root system in a vector space V of  

dimension at least 2. Then A is not contained in the union of  two hyperplanes 

(H; H')  of  V.  

The proof was indicated to us by J. Y. H~e. Let H be a basis of A and F the 

Dynkin diagram associated to H. Assume A C H U H' .  Since H spans V, there 

dimension of the module. 

behaviour of 
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exists c~ E H such tha t  a r H t a n d ~  E H such tha t  cd ~ H.  Then  ~ E H,  

cJ E H ' .  We can choose (c~, c~') such tha t  their distance in F is minimal. Let 

(c~0 = ~, a l , . . . ,  c~r - cd) be the pa th  joining c~ and cJ in r .  Since the distance 

of c~, c~' is minimal, c~i E H N H '  for i = 1 , . . .  r - 1. Set/~ = c~0 + ~1 + " '" + ~ .  

Then/~  E A (since (~0 + " "  + ~ , ~ + 1 )  < 0 for 1 < s < r -  1) so ~ C H U H'.  

However, if/~ E H', c~ --/3 - c~1 . . . .  C~r C H ' ;  if ~ C H,  c~ ~ r H,  contradiction. 

Remark: The proof  remains correct in essence, in the case of the system of 

r e a l  roots  in a K a c - M o o d y  algebra associated to an indecomposable generalized 

Car t an  matrix.  

In  conclusion, we note tha t  this proof  of Theorem 2 extends to the action of a 

symmetr ic  Hecke operator  Ts,  defined by a compact  connected Lie group G and 

acting on L2(G): since we want to produce a lower bound it suffices to consider 

L2(G/H)  where H is a subgroup of G such tha t  (G, H)  is symmetric .  If  G / H  

has rank one, essentially the same method  works; however, the centralizers will 

not  always be Levi subgroups and one needs an extension of Kostant ' s  formula 

to these centralizers. 
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