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ABSTRACT

We extend to the case of odd-dimensional spheres a theorem of Lubotzky,
Phillips and Sarnak giving optimally equidistributed sets of points. The
proof relies on the theory of automorphic forms and higher-dimensional
Shimura varieties.

Introduction

In 1986 Lubotzky, Phillips and Sarnak [9] applied the theory of automorphic
forms to the problem of distributing sequences of points on the sphere S2. They
considered families of increasing size of elements of SO(3), say

{717727 <o+ YN 71—17 .. 7]:]1} = Sa
and considered the operator

Ts=Z’7

operating on the space L3(S?) of L? functions of zero mean. For suitable choices
of the {7;} they showed that the operator norm of Ts is bounded by +v2N = 1;
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they also showed that this bound is optimal. A bound on the operator norm
implies, for any « € S2, a bound on

'%Tsf(x)‘/sz)f

for any suitably regular function f on $2. Thus the Ts yield a finite approxima-
tion of the integral, with a good error term.

The purpose of this paper is to extend some of these results to odd-
dimensional spheres. Thus let n > 2 be an integer and S2"~! the sphere
llz]l = 1 in R?" with the standard Euclidian metric. A Hecke operator is an
operator on L?($2"~1) of the form

T=Ts=) 1

Y€S

where v € SO(2n). We denote by d = deg(T') the degree of T; thus d = |S|. As
in [9] we set

171 L3(s* N

1
6(T) =
T deg T
where the norm is the L?-operator norm. Note that our operators are not sym-
metric.

THEOREM 1: There exists a positive integer h > 1 with the following property.
For each prime p = 1 [4], p > 13 there exists a Hecke operator T, of degree
d=h(p""t+---+p+1) such that

5(Ty) < hnpt=m/2,

COROLLARY: For any given € > 0,
8(Tp) < B3 n(1 4+ &)d(T,) ™2 (p = +o0).

The constant h is essentially a class number, which could be determined with
the requisite amount of (mechanical) computation. For large n it is not possible
to obtain h = 1, as in [9]. For heuristic purposes assume, however, that this is
attained. We can then ask whether the bound

(77 §(Tp) < n ptt=m/?

is optimal. One can show at least that the order of growth of é, with respect to
the degree, is indeed optimal.
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We identify R?" with C* endowed with the standard Hermian metric. We will
constuct our operators T, from elements v € U(n) acting naturally on the sphere.
They then also act on the quotient P*~1(C) of S?"~1. An argument of [9] applies
in this situation to yield:

THEOREM 2: It T is a symmetric Hecke operator (associated to elements of
U(n)) acting on L3(P"~1(C)), of degree d = 2N, 6(T) > v/2N — 1/N.

This has been proved by Pisier [10] for Hecke operators acting on the space of
functions of mean value 0 on the sphere. We include the proof, however, because
it is quite different and gives a natural extension of the methods of [9]. More
general results have been announced by Y. Shalom [12, §4.4].

In particular, this lower bound is a fortiori true for the action on LZ($?"~1).
It is likely that Theorem 2 could be proved, with no restriction on parity, for
L3(5™). This was suggested by the authors of [9]: see p. 164 of that paper.

Consider an operator T}, as in Theorem 1, and set T = T, + T;. Then, 6(T') <
20(Ty). (Here both operators are considered in L?(S52"~1).) Thus Theorem 1 and
Theorem 2 yield an upper bound and a lower bound on §(T), which are easily
seen to be compatible. We think, however, that in higher dimension the lower
bound should be more like n p(!~™)/2 (see (77) above), which of course has no
evident expression in terms of the degree. If we may assume h = 1, this can be
proved using the methods of Serre [11] which allow one to study the repartition
of the eigenvalues of T}, in spaces of spherical harmonics of high degree. We defer
this to an eventual application.

We have not spelled out all the consequences of Theorem 1; many would follow
simply by the methods of [9]. We only state the obvious consequence for finite
integration on S?"~1. Let A denote the invariant Laplace operator on the sphere.

THEOREM 3: Assume f is a function on S~ such that A" f is square-integrable
(so f is continuous). Then for any x € §2*~!

‘degtTp) Y fle) - /Szn_1 fl < hnpt="2{C|flla + Cal| A" |2}
b

The constants C and C; are independent of f and obtained as follows. Let ¢, 9
be two functions on the sphere such that A™¢ = § 41, § being the Dirac measure
at some point zg on the sphere. We assume 1 to be C* and ¢ continuous. Then
C: = ||¢¥|l2 and Cy = ||p||2. The proof (in a more general context) can be found
in [4, §8]. We repeat it.

Let G = U(n), and let K = U(1) x U(n — 1) be the stabilizer of the point
z € $?"~1. The Laplacian A on the sphere can be seen as an element of U(g)¥,
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a commutative algebra since (G, K) is a symmetric pair. We in turn consider A
as a distribution on G with support at the origin. Let é be the Dirac measure at
x. It is well-known that there exist functions ¢, 1 on $?»~! = G/K such that

px A" =35+

with ¥ C°° and ¢ continuous. Averaging, we may assume , 1 invariant by K.
Then this can be rewritten as

A" x =0+ 1.

Now the argument of [4, §8] yields, with T = d—engij,

Tf—fo=[T(f*A") — (f x A™)o] * o — [T(f — fo)] * ¥,

go denoting for any function g on S?"~! the constant function equal to [,._ g.
Since |g * h|(z) < ||gll2]|||2 for two functions on G, the result follows.

The proof of Lubotzky, Phillips and Sarnak relied on the Ramanujan conjec-
tures proved by Deligne. Our proof relies on higher-dimensional analogues of the
Ramanujan conjecture, and implicitly on deep results concerning the Hasse—Weil
zeta functions of Shimura varieties and obtained in the last decade. As well as
Deligne’s general solution of the Weil conjectures [6], we use Kottwitz's results
on special Shimura varieties [8] and the solution given by us of a conjecture of
Rapoport.

Finally, we can obtain an explicit set of primes (here p > 13) only by using
the solution by Harris and Taylor of the local Langlands conjecture!

We note that we do not know how to extend these results to even-dimensional
spheres. Here, however, weaker estimates are available as a consequence of [3]
and are contained in a paper by H. Oh.*

1. Hecke operators on certain unitary groups

1.1. We view $?"~! as a quotient of G = U(n). A Hecke operator is an
operator on L?(G) of the form T = Y 4es 7 S C G. We use the notations of the
Introduction. Theorem 1 follows from

THEOREM 1.1: For p =1 [4], p > 13 there exists a Hecke operator T,, of degree
d=h(P !+ - +1) such that

1 -n
8(Ty) = S|ITy | Lio(G)Il < hnpt=72,

* H. Oh, Distributing points on §~ (N > 4), aprés Lubotzky, Phillips and Sarnak.
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We will in fact construct an infinite number of such operators. Here L2,(G) is
the space of functions on G orthogonal to the Abelian characters.

In this paragraph we have to recall the formalities of “automorphic forms on
compact groups”. Since U(n) plays no particular role, we consider an arbitrary
reductive group G over Q such that G(R) is compact. (Thus U(n) will be G(R).)
Write G(A) = G(R) x G(Ay). Let K be a compact open subgroup of G(Ay).
Then we can choose a finite set of elements (g;)icr of G(Ay) such that

(1.1) GA) =[G@QGR
i€l
If, moreover, G(R) - g K g~! N G(Q) = {1} for any g € G(A;), (1.1) yields
(1.2) X = GQ\GA)/K 2 [[6®)
i€l

the embedding of each factor G(R) being given by goo — googs- We will make
this assumption. Let h = #1.

In particular, the space of smooth functions on G(Q)\G(A) invariant by K is
identified with @, C>°(G(R)); ditto with L? functions.

Suppose z € G(Ay). Our operator T will be given by the action on the right
of the double coset K x K on L?(Xk). We identify L?(Xg) with L2-functions
on G(Q)\G(A), invariant by K on the right. Set

(1.3) KxK:HK:cnj, hj =z k; € G(Ay),
a finite sum, where ;(j € J) ranges over v 'K 2 N K\K. Then
(1.4) (fIT)(9) =>_ f(ghy).

By (1.2) L*(Xk) & @;c; L*(G(R)). For f € L¥(Xk) write f = (f;). Then

flT =¢= (‘:Oa)ael- For each a, 9004(900) (FIT)(9c090) = Z f(googah )
Note that (1.1) implies

(1.5) G(As) =[] 6(@g:K.

i€l
Thus we can write, for each pair (o, ),
(1.6) gah; = v(e, §)gi(a 5 k(@ )

with v(a, j) € G(Q) and x(a, j) € K.
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For clarity write (ge0;gy) for an element of G(A) = G(R) x G(Ay). Then
¥(9oo; g5) means v € G(Q) acts diagonally, while vg.., 7g; denote the separate
actions. Now

Yaldoo) = Zf((gooa gahj))
= Zf((goo; ’Y(a’j)gi(a,j))

(since f is K-invariant)

=2 F((v(@ ) " 9o} Gita.)

(since f is G(Q)-invariant)
= Z fi(a,j)(’Y(O{, j)_lgoo).
J

We record this as

LEMMA 1.1: (f|T)a(9s0) = 32 fi(aiy (7 (e, 7)1 900)-

Now consider L2(G(R)) embedded diagonally in L2(Xg) by f — (f,..., f);
denote this embedding by J; let S: L?(Xk) — L2(G(R)) be the sum, (f;) —
>~ fi- Then the operator ST J sends f to

ST J(f)(9c0) ZZf v(a, 5) goo)-

Thus it is a Hecke operator in the sense of the Introduction. Since the norms
of J and of S are both equal to v/A, we have for the L?-operator norms:

LEMMA 1.2: ||ST J|| < R||T).

Denote by L2,(X k) the subspace of functions orthogonal to all 1-dimensional
characters of G(R)". Since T commutes with the diagonal action of G(R) on the
right, T preserves L,; J sends L3,(G(R)) (defined analogously) to L2,(X k) and
conversely for S. Thus:

LemMA 1.3: ST J | Li(GR))I| < AT | Lio(GR))]-

1.2. Now G(R) = U(n) and we must construct the group G/Q. We use the
groups constructed in [8]. Let E be the field Q(y/—1) and let D be a division
algebra over E satisfying the following properties:

(1.7i) D admits an involution of the second kind * relative to E/Q.
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(1.7i1) At the two primes 5’, 5” of E dividing 5, D has invariant 1/n, —1/n; it is
thus a division algebra over these local fields.
(1.7iii) The involution () is positive on D @ C.

Let G be the unitary group over Q defined by D:

GQ ={deD:dd* =1}.

Then G(R) = U(n) by (1.7iii). We further assume:

(1.7iv) G is quasi-split and unramified at all primes p # 2,3 and 5.

That G can be so chosen (for a suitable choice of D and x) is proved in [1, §2].

We now choose the group K =[], K, C G(Ay). The group G(Qs) is isomor-
phic to D*(FEs:), a division algebra over 5. Let K5 be its maximal compact
subgroup. For p > 5, G(Q,) is unramified — a unitary group or GL(n) — and
has a natural hyperspecial subgroup K. Finally, we choose K3 or K3 small
enough that the assumptions in §1.1 are met. Of course we have no control on
the resulting class number h.

The operator T, of Theorem 1.1 will be ST J, where T is a Hecke operator
in the Hecke algebra of (G(Qy), K,) for p = 1 {4]. Then G(Q,) = GL(n,Qy),
K, = GL(n,Z,) and

p
1
T=K, . K,.
1
The space Hi is L2(G(Q)\G(A)/K) = L*(G(Q)\G(A))X. The space

L(G(Q\G(W)) = Lg

decomposes discretely as a sum of automorphic representations of G(A), of the
form 7 = 7o @ Q,, Tp-

Recall [1] that 7, determines its Hecke matrix, a diagonal matrix ¢, in
GL(n,C). Then, with the implicit normalizations we chose, the associated oper-
ator T acts by p("_l)/z(tl + -+ +t,) where (t;) are the eigenvalues of ¢, ,. We
now have:

PRrROPOSITION 1.4: If 7wy Is not an Abelian character, |t;| = 1.

Proof: 'We show that the representation = of G(A) lifts to an automorphic
representation 7g of G(Ag) = D*(Ag) such that

(1.8) For p > 5 and plp, Tg p is obtained by unramified base change from .
(1.9) mg s and 7gn are Abelian characters.
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(1.10) The infinitesimal characters of the Archimedian components 7o, and 7g oo
are associated by base change (cf. [2]).

The argument is essentially contained in Clozel-Labesse [2: Théoréme A.5.2],
whose notations we keep. Let S = {2,3,5}, and choose small compact-open
subgroups K3, K3 of Ka, K3. Then if K' = K3K K5 ][] ,55 Ky, 7K' oceurs in
L*(G(Q\G(A)/K'). We take a function f on G(A) of the form foo ® &, fp,
where f, is the characteristic function of K, and f. is the normalized character
of mo. If 7 denotes the representation for p < 5, of G(A) on Lg, and f5 =
&,¢s fp is unramified,

trr(f) ={ Y trpoo(foo) trps(fs)}xo(f¥)
xfixf

+ Z tF Poo(foo) trpS(fS)Xp(fS)»
xf;xf
the sums being finite even for varying f°. The coefficient {- - -} is strictly positive.
For K}, K} small enough, the functions f, and f3 are associated to functions s,
w3 on G(F®Qs), G(E®Qs3). The same is true for the function f5 since 5 splits.
The proof now follows as in [2: Théoréme A.5.2] from the base change identity
[2: Théoréme A.3.1]; by the correspondence of Hecke functions (1.8) is satisfied,
and (1.9) also is satisfied by split base change at 5.

Now p splits in F, so n, determines a representation of D*(E ® Q,) =
GL(n,Q,) x GL(n,Q,), isomorphic to 7, x 7, (up to identifications). We must
show the “purity” condition |¢;|] = 1. For this, note that by the Jacquet—
Langlands correspondence — due in this case to Vignéras — 7 is associated
to an automorphic (discrete) representation . of GL(n,Ag); since 7g is an
Abelian character at 5’ or §”, 7%, is isomorphic to an Abelian twist of the Stein-
berg representation at those primes, and therefore cuspidal, or is an Abelian
character [13]. The last possibility is ruled out because 7% o, & g o0, and the
infinitesimal character of 7 o, comes from that of 7., by base change: but s
is not an Abelian character. Harris and Taylor then show that there is a Galois
representation — pure of weight 0 — whose Frobenius eigenvalues are associated
in the usual fashion to the Hecke matrices [7, Theorem C]. This implies that
[t;| = 1. (If we were content with almost all primes we could use the results in
1, 2])

We note that Theorem 1 follows from Theorem 1.1: since $%"~! is the quo-
tient of U(n) by the subgroup U(1) x U(n — 1) stabilizing the first basis vector,
L?(8?"=1) is a subspace of L?(U(n)). Then L3(§%"1) = L&, (U(n))NL3(S?"~1).
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Use Lemmas 1.2 and 1.3. Finally, we remark that obviously other sets of primes,
associated to different quadratic fields, would be obtained analogously (but with,
in each case, a different h).

2. Proof of Theorem 2

The proof adapts the methods of [9] to our case. We follow the exposition of Colin
de Verdiere [5]. However, a more delicate representation-theoretic argument is
needed in addition to [9]: this is due to the fact that our Lie group (here PU(n}),
see below), unlike SO(3), has singular elements different from 1.

Since we are working in L2(P"~!(C)), the unitary group U(n) acts in fact
via the projective unitary group PU(n), which we denote by G. Thus S =
{71,72, - --VN,’h_l, .. .,’y&l} can be taken to be a symmetric set in G; let Ts be
the associated Hecke operator. We have

P Y(C) = G/H where H=P(U(1) x U(n —1)).

Let T C H C G be the (diagonal) maximal torus. An irreducible representation
of G is then determined by its highest weight. This is a character of T=U (n»
U(n), given by A = (A1,...,A,) € Z™ with Ay > --+ > A,; moreover LA; = 0.

We are interested in representations that occur in L?(G/H). Since (G, H) is a
symmetric pair they occur with multiplicity one; by the theorem of Cartan—
Helgason [14, Theorem 3.3.1.1] these are the representations such that A =
(A1, s by -« o). Thus A = ((n—1)r, —r, —r,...,—7) for r > 0. We will sometimes
write A = A, (r € N). From now on A will always denote such a weight.

Let V., C L?(G/H) be the associated space, and let . denote the atomic
measure on R with support in [-2N,2N] — 2N being the operator norm of Tg
— given by

dim V..

dlIIlV ( Z 5)")’

where {);} are the eigenvalues of Ts in V. and dy; is the Dirac measure at A;.

(2.1) e

Theorem 2 follows from:

THEOREM 2.1: For r — o0, p. — p, the spectral measure of the group T
generated by S in G with respect to the generators S.

We refer to [9] or [5] for the notion of spectral measure, and for the fact that
Theorem 2.1 implies Theorem 2 (by a theorem of Kesten). Recall that u, a
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measure on [—2N, 2N], is determined by its moments: for s € N,
(2.2) /tsdu =ms;=#{yeW,;:y=1in G}.

Here, W is the set of words of length s in the generators (v;,7;%).
In order to prove Theorem 2.1, it is then sufficient to estimate [ t*dy, for fixed
s and r — +00. Now

1 1
? r = T+ <75 YA = ——— S
/ tdur = Fav. 2N = gyt

and this is equal to

(2.3)

Ify=1inG, Eiml—v; tr(y|V,) = 1. Since W, is fixed it suffices to prove:
LEMMA 2.3: Ifge G and g # 1,

1
dim V,

Proof: Let x € U(n) be a lift of g for the natural map U(n) — G; then z is
not central. If z is regular the lemma follows immediately from Weyl’s character

tr(g|Ve) = 0 (r — +00).

formula (cf. [9]). Assume x singular. Its centralizer in U(n) is then equal to
M =U(ny) x -+ x U(n;) and different from U(n) : ¢t > 2.

We may see V, as a representation of U(n) D M. The character of its restriction
to M is then given by Kostant’s formula:

Y e(w)char (VM ,-,)
Y w E(w) chpr (Vigp—p)

Here w ranges over elements of the set QM C Q, Q being the Weyl group of
(G,T) and QM the subset such that w™*A}; C AL — here Ag = A UAY is
the root system of (G, T) for some choice of Borel subgroup and A}, = AENA,
with obvious notation. We have indexed irreducible modules VM for M by their
highest weight. See [14, Theorem 2.4.2.2] for the other (standard) notations.

A priori this is a formal identity in the Grothendieck group of representations
of M, but it can in fact be evaluated on an element x in the center of M. For

(2.4) chye(Vy) =

this it suffices to check that the denominator is non-zero. Using Weyl’s formula
we see that the denominator (seen by restriction as being in the Grothendieck
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group of T') is equal to the following expression, {2ps being the Weyl group of M:

ZwEQ E( —1 _ a
239) ZweQM e(w )"UP H (1

QGAG
aeAM

Since the centralizer of z is exactly M, the right-hand side of (2.5) is non-zero
at x.

Now consider again (2.4). The denominator (at z) is fixed and non-zero when
A varies. We must show that for r = +00 and A = A, each term

(26) S(w) ChM(Vt%)H-p)—p)a

divided by dim(V}.), tends to 0. Since z is central in M, (2.6) is essentially the
dimension of the module. By Weyl’s dimension formula, we must consider the
behaviour of

[15B, wA+p) — p+ pum)
[Ta{a, A+ p)

Here o ranges over positive roots of (G, T) and 3 over positive roots of (M, T).
Now (2.7) is

(2.7)

[L,(r, A+ p—w(p—pm))
(e A+ p) ’
where now ~ ranges over w™!A}, C Ak, a subset of the o’s. If « is equal to 7,
the corresponding ratio is constant (if o vanishes on the direction of the A’s) or
tends to 1. (Note that all terms are positive.) So we only have to show:

LEMMA 2.4: Fix w € QM. There exists o ¢ w™ A} (a € A}) such that
<a,)\1> =,'é 0.

Indeed, let Aps, be the subset of & € A such that (@, A1) = 0 (it is the root
system of a Levi subgroup of the complexification of G). If the Lemma is false,
AY Cc w A}, U Apy,. In particular, Ag C w™'Ap U Apy,. This says that the
root system of G is the union of two roots systems associated to proper Levi
subgroups.

Thus the following lemma completes the proof:

LEMMA 2.5: Assume A is an irreducible root system in a vector space V of

dimension at least 2. Then A is not contained in the union of two hyperplanes
(H;H') of V.

The proof was indicated to us by J. Y. Hée. Let II be a basis of A and I the
Dynkin diagram associated to II. Assume A C H U H'. Since II spans V, there
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exists @ € II such that « ¢ H' and o € II such that o' ¢ H. Then o € H,
o € H'. We can choose (o, ') such that their distance in T' is minimal. Let
(ag = o, 1, ...,a, = ') be the path joining a and ¢ in T. Since the distance
of a, o/ is minimal, oy € HNH' fori=1,...7~1. Set S =g+ o1 + -+ .
Then 8 € A (since (g + -+ + ag,a541) <O0for1 <s<r—1)so € HUH'.
However,if e H,a=f—ay---~a, € H;if € H, o' ¢ H, contradiction.

Remark: The proof remains correct in essence, in the case of the system of
real roots in a Kac-Moody algebra associated to an indecomposable generalized
Cartan matrix.

In conclusion, we note that this proof of Theorem 2 extends to the action of a
symmetric Hecke operator T, defined by a compact connected Lie group G and
acting on L2(G): since we want to produce a lower bound it suffices to consider
L?*(G/H) where H is a subgroup of G such that (G, H) is symmetric. If G/H
has rank one, essentially the same method works; however, the centralizers will
not always be Levi subgroups and one needs an extension of Kostant’s formula
to these centralizers.
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